Lower Columbia

Estuary Partnership

Action Effectiveness Monitoring and Research Status Update Science Work Group Meeting February 24th, 2015

Matthew Schwartz 2/18/2015

Overview

- 2015 AEMR Status
 - Programmatic AEMR Overview
 - Prioritization
 - Metrics
- 2014 Results
- Level 3 AEM Discussion

Action Effectiveness Monitoring and Research (AEMR) Objective

- Determine the success of restoration actions at site, landscape, and estuary-wide scales in terms of improved ecosystem functionality

Programmatic Action Effectiveness Monitoring

Columbia Estuary Ecosystem Restoration Program (CEERP) Objectives*

- Obj. 1. Increase the capacity (quality) of estuarine and tidal-fluvial ecosystems
- Obj. 2. Increase the opportunity for access by aquatic organisms to and for export of materials from shallow water habitats
- Obj. 3. Improve ecosystem realized functions for juvenile salmonids

Action Effectiveness Monitoring

Analysis Questions* - *Habitat-based* (ecosystem controlling factors, structures, and processes)

- Have hydrological processes been improved (e.g., tidal influence and flood regime) and are they self-maintaining?
- Has aquatic connectivity with the main stem river been improved and is it self-maintaining?
- Is the rate of sediment accretion at the restoring site at an expected level and is land elevation predicted to be self-maintaining?
- Are restored habitats self-maintaining in terms of channel crosssectional area? Percent cover of native versus invasive plant species?
- Is habitat restoration resulting in improved (or normative) water temperatures?

Action Effectiveness Monitoring Programmatic Strategy - Levels

\$\$\$\$ **Level 1 – Intensive** CTITITITE ST E.g. fish density, growth, genetics, diet \$\$ Level 2 – Extensive # Monitored Indicators E.g. channel cross-sections, plant biomass Level 3 – Basic (or Standard) Measurements E.g. water surface elevation, water temperature, sediment accretion

Restoration Projects

Prioritization Criteria for Action Effectiveness Monitoring in 2015

Торіс	Criterion	Weighting	Scoring Measures
Addresses a key uncertainty in action effectiveness	ERTG Uncertainties	***	2 = very useful; 1 = applies; 0 = doesn't apply
Preliminary SBU	Project size; location relative to main stem; ecological uplift anticipated (see ERTG Doc# 2010-02)	**	3 = >3 SBUs; 2=1-3 SBUs; 1=.399 SBU; 0=<.3
Landscape locations of AEMR study sites	Locations in landscapes where AEMR has occurred; reference site(s) are available	*	1- Little = 0-6; 2- Some = 7-12; 3- Much = >12

Prioritization Results for Action Effectiveness

Monitoring in 2015

Project Name	Criterion 1: Landscape Scale	Criterion 2: CEERP management applicability	Ocean SBU's	Stream SBU's	Criterion 3: Combined SBU	2015 AEMR Prioritization Score
Columbia Stock Ranch (CSR) - Acquisition & Restoration	3	1	5.15	1.70	6.85	18.70
Buckmire Slough Restoration - Phase 2	3	1	3.30	1.21	4.51	14.01
Wallooskee Youngs	2	1	2.25	0.81	3.05	10.10
Sauvie Island, North Unit (Ruby Lake) Restoration - Phase 1	3	2	0.92	0.29	1.21	9.42
LaCenter Wetlands, Lewis River East Fork (Site 43 and 43B) Restoration	3	1	1.49	0.47	1.96	8.92
Sandy River Dam Removal	3	2	0.44	0.16	0.60	8.20
Sauvie Island, North Unit (Millionaire, Widgeon/Deep Lakes) Restoration - Phase 2	3	1	1.06	0.34	1.40	7.80
Grays Bay Kandoll Farm Restoration - Phase 2	2	1	1.25	0.42	1.67	7.34
Reach C Floodplain Slough Reconnection (R)	3	1	0.86	0.29	1.15	7.29
Crooked Creek Upstream - Acquisition & Restoration	2	1	1.05	0.34	1.39	6.77
Trestle Bay Jetty Breach	2	1	1.00	0.31	1.30	6.60
Skipanon Slough, 8th St Dam Restoration	2	1	0.91	0.36	1.27	6.54
Chinook River WDFW - Acquisition & Restoration	2	1	0.84	0.42	1.26	6.52
Elochoman Slough Thomas - Acquisition & Restoration	2	1	0.81	0.35	1.16	6.32

Anticipated Action Effectiveness Monitoring in

2015 Monitoring Metrics

		orates	n and on	l orates	ace nd re	etion	Its
Site	Reach	Benthic Macroinvertek	Vegetatio Community Compositio	Terrestria Macroinvertek	Water Surfa Elevation a Temperatu	Sediment Acc	Photo Poin
Wallooskee-Youngs	Α	x	X	х	x	Х	X
Steamboat Slough	В		X	×	x	Х	X
Elochoman Slough	В		X	x	х	Х	X
La Center Wetlands	E	X	X	X	х	Х	X
Sauvie Island - North Unit Phase 2	F		х	x	х	Х	x
Chinook River	Α		Х	Х	Х	Х	X
Wallacut River	Α				Х	Х	X
Skipanon Slough	Α				Х	Х	X
Sharnelle Fee	Α				х	Х	X
Karlson Island	В				х	Х	X
Batwater Station	C				x	Х	X
Sauvie Island - North Unit Phase 3	F				x	X	x
Thousand Acres	G				х	Х	X
Multnomah Wakeena	Н				x	X	X

Blue Carbon

- Blue carbon is the carbon stored and sequestered in coastal ecosystems such as mangrove forests, seagrass meadows or intertidal saltmarshes (<u>http://bluecarbonportal.org/</u>).
- Pacific Northwest tidal wetlands have high potential for carbon sequestration for several reasons including sediment delivery, high organic content in soils, and sheltered settings.
- Pilot study at Wallooskee-Youngs funded by USFWS and BPA
 - Quantify existing soil carbon storage at least disturbed and disturbed sites
 - Quantify rate of carbon sequestration at least disturbed and disturbed sites

Equipment and Technical Support

- Technical or Field Support
 - Site sampling design
 - Data management
 - Methods
- Hydrology Monitoring Equipment
 - Hobo Onset pressure & temperature data loggers (long-term)
 - Hobo Onset temperature (only) data loggers (long-term)
 - Flow/discharge meter and rod (short-term)
- Survey and Mapping GPS Units
 - RTK ProMark 200 survey and mapping units (base and rover) including tripod and monopod (short-term)
 - Auto Level including tripod (short-term)

Questions

2014 Level 2 Results

2014 AEM Questions

Estuary Scale

- What are the status and trends of metrics through the estuary and lower river at restoration and reference sites?
- Landscape/Reach Scale
- What metrics can be used to evaluate effectiveness or ecological uplift of restoration actions at the reach scale?

Site Scale

- Does lowering wetland topography effectively control of Reedcanary grass?
- What species of salmonid prey items (terrestrial macroinvertebrates) are available pre vs. post restoration?

2014 AEM

2014 AEM

- Level 2 Metrics
 - Vegetation Community and Composition
 - Salmonid Prey Terrestrial Macroinvertebrates
 - Channel Cross Sections

AEM Site Sampling Set-up

Ту ре

Approximate Restoration Extent

Plots

- Veg Plot, Permanent
- Veg Plot, Status
- Fall out trap
- Baseline Start
- Baseline End

Soures: Esk, Digital@lobs, @soEys, I outsed, USDA, US@S, AEX, @stmapping, Asrogkd, JeXI, JeP, swisstopo, and the OIS User Community

Non-Metric Multidimensional Scaling (Ordination) (McCune and Grace 2002)

- In community ecology, we expect redundancy in species datasets to reflect the effects of the same underlying environmental gradients on different species, resulting in covarying of species' presence and absence
- Why NMS?
 - Well suited to data that are nonnormal or on arbitrary, discontinuous, or otherwise questionable scales
 - Avoids the assumption of linear relationships
 - Allows the use of any distance measure or relativization

NMS Vegetation Composition

North Unit Phase 2 Deep Widgeon

> North Unit Phase 2 Millionaire

North Unit Phase 1 Ruby Lake

Cunningham Lake Reference Site

0.5 Miles

Imagery Date: 8/15/2012

0.125 0.25

North Unit Phase 2 Deep Widgeon

> North Unit Phase 2 Millionaire

North Unit Phase 1 Ruby Lake

Cunningham Lake Reference Site

0.5 Miles

125 0.25

NU Phase 1

North Unit Phase 1 and Cunningham Lake

NU Phase 1

NU Phase 1 North

NU Phase 1 South

NU Phase 1 Terrestrial Macroinvertebrates

Kandoll Farm A

- Veg. Plot, Permanent
- Veg. Plot, Status
- Fall Out Trap
- Mega Transect Start
- Mega Transect End

Meters

Kandoll Farm E.

Kandoll Farm and Secret River

NU Phase 1

Kandoll Farm Plot A

Kandoll Farm Plot E

Kandoll Farm Terrestrial Macroinvertebrates

Kandoll Farm Plot A LPI

Legend

- Veg. Plot, Permanent
- Veg. Plot, Status
- Fall Out Trap
- Mega Transect Start
- Mega Transect End

Meters

50

Kandoll Farm Overview

Plot E

Plot A

Secret River (Reference)

sourear Earl, Digkalisiobe, SadEya, Joursad, USDA, Store ADX, Commission, Jaroydd, taki, ICP, awlaatopo,

Source: Sarl, DigitalGloba, GeoSya, Leubed, USDA, USGB, ASX, Germandul, Aamendd, IGH, IGP, ewlasidoo and the GIS User Community

0 12.5

Kandoll Farm Plot A LPI

Kandoll Farm Plot E LPI

Legend

- Veg. Plot, Permanent
- Veg. Plot, Status
- Fall Out Trap
- Mega Transect Start
 - Mega Transect End

Kandoll Farm Overview

Secret River (Reference)

eousiar Barl, Digitaleolaa, Gudžya, tentool, UBDA, Ustael XISK, Geomerphilis, Aerogriff, ISM, ISP, suitestopo,

Plot A

Meters

 Source Scritt Optical Stobe, GeoSya, Foliaed, USCA, USCA, ASX, Setmapping, Acronic, IGN, K3P, ewletingo, and the SIS User community

Kandoll Farm Plot E LPI

Horsetail Creek PIT tag Array

- Operating Pre and Post Restoration
- Identify fish/life stage
- Determine if fish transit culvert

Horsetail Creek PIT tag Array

- Hatchery and Wild Stocks Detected
 - Hatchery fish from the Snake and Salmon Rivers
- In 2014 summer run steelhead had residence time ranging from 1-11days
 - Juvenile fish transited culvert
 - One summer run steelhead from the Snake River was detected in spring and fall

Horsetail Creek PIT tag Array

-	2013						2014		0			✓							
Species	# of fish detected	April	May	June	July	Aug	Sept	Oct	Nov	# of fish detected	March	April	May	June	July	Aug	Sept	Oct	Nov
Juvenile hatchery spring Chinook	11									1									
Juvenile hatchery summer Chinook										2									
Juvenile hatchery summer steelhead	2									3									
Juvenile hatchery fall Chinook	4										C								
Juvenile wild steelhead	2									3									
Juvenile hatchery coho	4									3									
Adult spring Chinook	1																		
Adult fall Chinook	10																		
Adult coho	28									15									
Adult Steelhead										1									
Adult sockeye	1																		
Adult hatchery fall Chinook	3																		
Adult hatchery coho	2																		
White sturgeon										1									

Level 3 AEM Discussion

Level 3 AEM Discussion

- Brief Level 3 site report for Horsetail
- Group Discussion
 - How's it going with AEM?
 - What can be improved?
 - Time and resource constraints
 - Data management

Horsetail Monitoring

Level 3 Photo points Post restoration

Pre-restoration

Post restoration (winter)

Horsetail Monitoring

Horsetail Monitoring (Temperature)

 Lowest mean 7-day moving average maximum daily temperature at control locations on Horsetail and Oneonta Creek was ~2°C warmer in 2014 than 2010

- Warmer and drier conditions masking improvements related to restoration
 - 2010 was cooler and wetter than 2014, but the observed difference in temperature from the upstream to downstream on the Horsetail Creek were similar

Horsetail Monitoring

- Increased discharge on Oneonta Creek
- Sediment accreation TBD
- WSE TBD
- LWD Channel Cross Sections TBD

Level 3 AEM Questions and Discussion

How's it going with AEM?

What can be improved?

Time and resource constraints

Data management