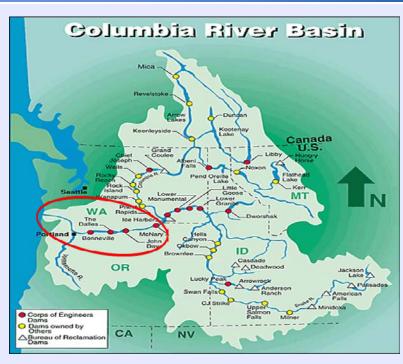
Columbia River Cold Water Refuges Project

June 2018

John Palmer, Dru Keenan, Jenny Wu EPA Region 10

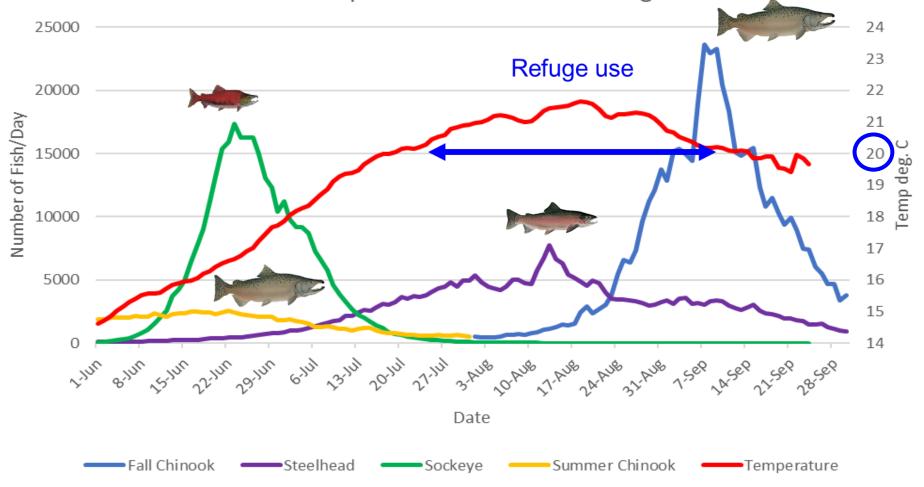
1

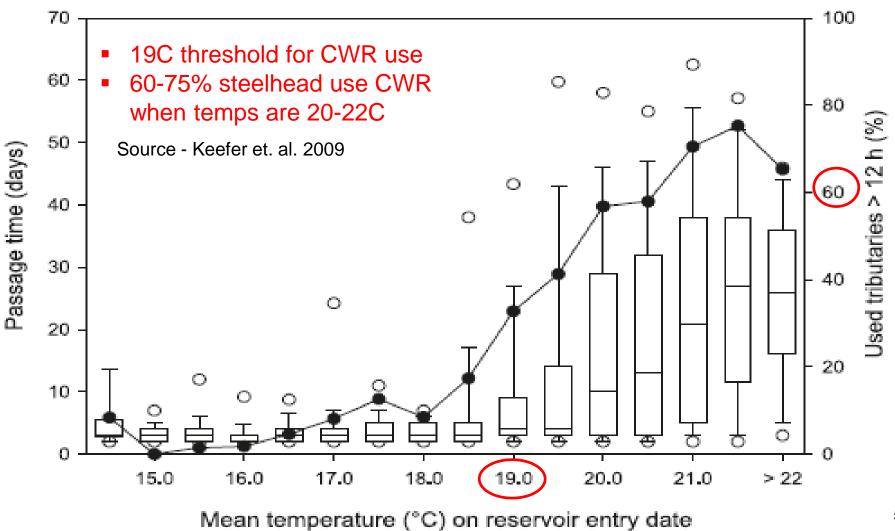


- NMFS 2015 Jeopardy Biological Opinion on EPA's Approval of Oregon's Temperature Water Quality Standards
- Oregon Columbia & Lower Willamette River Temperature Criteria
 - 20C numeric criteria, plus
 - Cold Water Refugia (CWR) narrative criteria
 - "must have CWR that's sufficiently distributed so as to allow salmon and steelhead migration without significant adverse effects from higher temperatures elsewhere in the water body"
 - "CWR means those portions of a water body where, or times during the diel cycle when, the water temperature is at least 2C colder than the daily maximum temperature of the adjacent well mixed flow of the water body"
- NMFS concluded CWR narrative criteria is not an effective criteria due to lack of implementation
 - Jeopardy for Steelhead (LCR, UWR, MCR, UCR, SRB); Chinook (LCR, UWR); Sockeye (SR); SR Killer Whales
 - Reasonable and Prudent Alterative (RPA) EPA develop a Columbia River Cold Water Refuges Plan by November 2018

EPA Columbia River CWR Plan

SMURONINED STATES SOUBLE

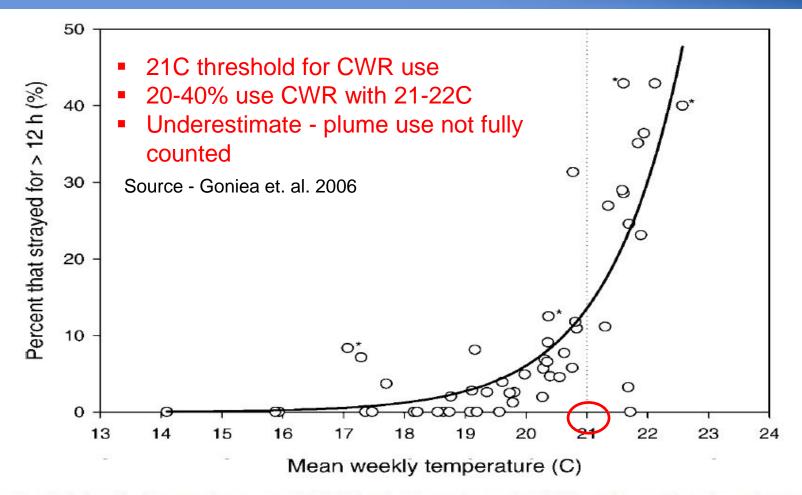
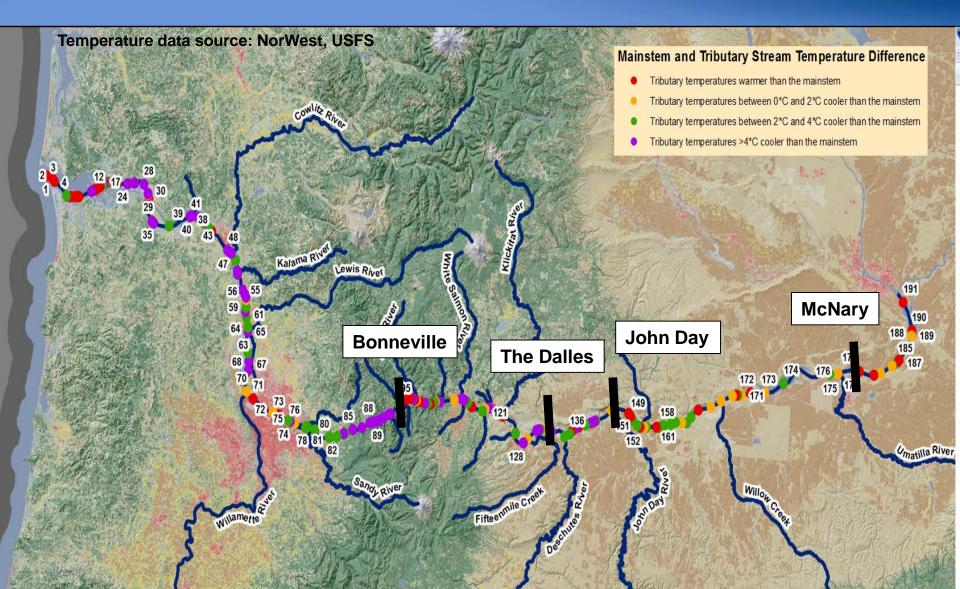

- 1. Map and characterize the CWR areas in the Lower Columbia River
- 2. Characterize the extent to which salmon and steelhead use CWR
- 3. Assess whether current CWR is sufficient to meet Oregon's narrative criteria
- 4. Identify actions to protect, restore, or enhance CWR

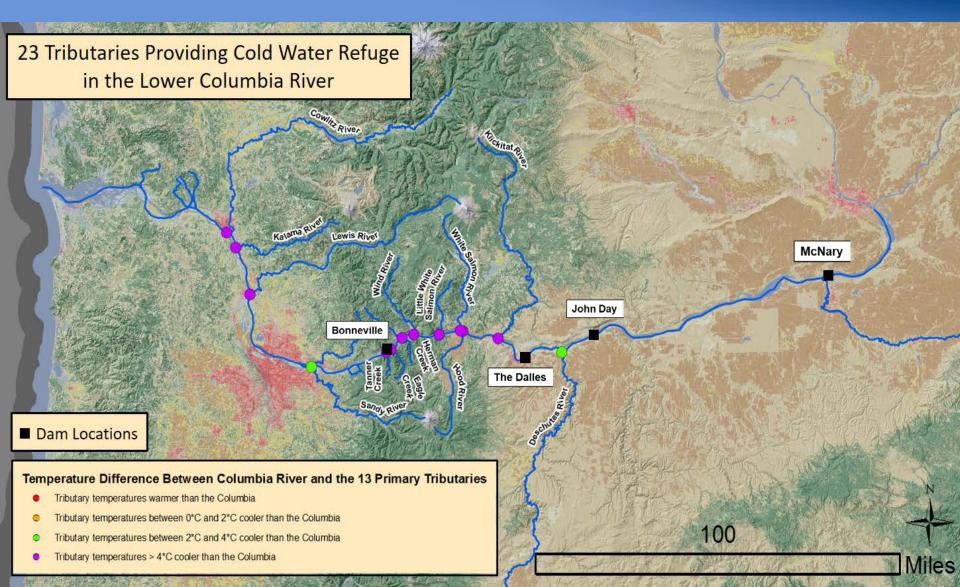

Bonneville Dam Temperatures and Fish Passage

Adult Salmon & Steelhead Passage at Bonneville Dam June - September 2007-2016 Average

Steelhead use of CWR

Chinook use of CWR


FIGURE 6.—Relationship between the percent of fall Chinook salmon that used (>12 h) coolwater tributaries and mean weekly water temperatures at Bonneville Dam. Circles represent 52 weekly bins (mean = 41 fish/bin; range = 4–122 fish/bin). The curve is the exponential regression line that best fits the data ($r^2 = 0.80$; P < 0.0001; percent = $6.558^{-7}e^{-0.802 \times \text{temperature}}$). Asterisks indicate data points with fewer than 10 fish.

191 Columbia River Tributaries below Snake River Confluence

Lower Columbia River CWR

Lower Columbia River CWR (23 Total/13 Primary)

						Plume CWR	Stream CWR	Total CWR
	River	Mainstem	Tributary	Temp	Tributary	Volume	Volume	Volume
Tributary Name	Mile	Temp ¹	Temp ²	Difference	Flow ³	(> 2°C Δ) ⁴	(> 2°C Δ) ⁵	(> 2°C Δ)
,		°C	°C	°C	cfs	m3	m3	m3
Skamokawa Creek	30.9	21.3	16.2	-5.1	23	450	1,033	1,483
Mill Creek	51.3	21.3	14.5	-6.8	10	110	446	556
Abernethy Creek	51.7	21.3	15.7	-5.6	10	81	806	887
Germany Creek	53.6	21.3	15.4	-5.9	8	72	446	518
Cowlitz River	65.2	21.3	16.0	-5.4	3634	870,000	684,230	1,554,230
Kalama River	70.5	21.3	16.3	-5.0	314	14,000	57,089	71,089
Lewis River	84.4	21.3	16.6	-4.8	1291	120,000	493,455	613,455
Sandy River	117.1	21.3	18.8	-2.5	469	9,900	129,372	139,272
Washougal River ⁶	117.6	21.3	19.2	-2.1	107	740	32,563	33,303
Bridal Veil Creek	128.9	21.3	11.7	-9.6	7	120	0	120
Wahkeena Creek	131.7	21.3	13.6	-7.7	15	220	0	220
Oneonta Creek	134.3	21.3	13.1	-8.2	29	820	54	874
Tanner Creek	140.9	21.3	11.7	-9.6	38	1,300	413	1,713
Bonneville Dam								
Eagle Creek	142.7	21.2	15.1	-6.1	72	2,100	888	2,988
Rock Creek ⁶	146.6	21.2	17.4	-3.8	47	530	1,178	1,708
Herman Creek	147.5	21.2	12.0	-9.2	45	168,000	1,698	169,698
Wind River	151.1	21.2	14.5	-6.7	293	60,800	44,420	105,220
Little White Salmon River	158.7	21.2	13.3	-7.9	88	1,097,000	4,126	1,101,126
White Salmon River	164.9	21.2	15.7	-5.5	715	72,000	81,529	153,529
Hood River	165.7	21.4	15.5	-5.9	374	28,000	0	28,000
Klickitat River	176.8	21.4	16.4	-5.0	851	73,000	149,029	222,029
The Dalles Dam								
Deschutes River	200.8	21.4	19.2	-2.2	4772	300,000	580,124	880,124
John Day Dam								
Umatilla River ⁶	284.7	20.9	20.8	-0.1	169	0	46,299	46,299

Cowlitz River CWR

Google⁻earth

24

22 20

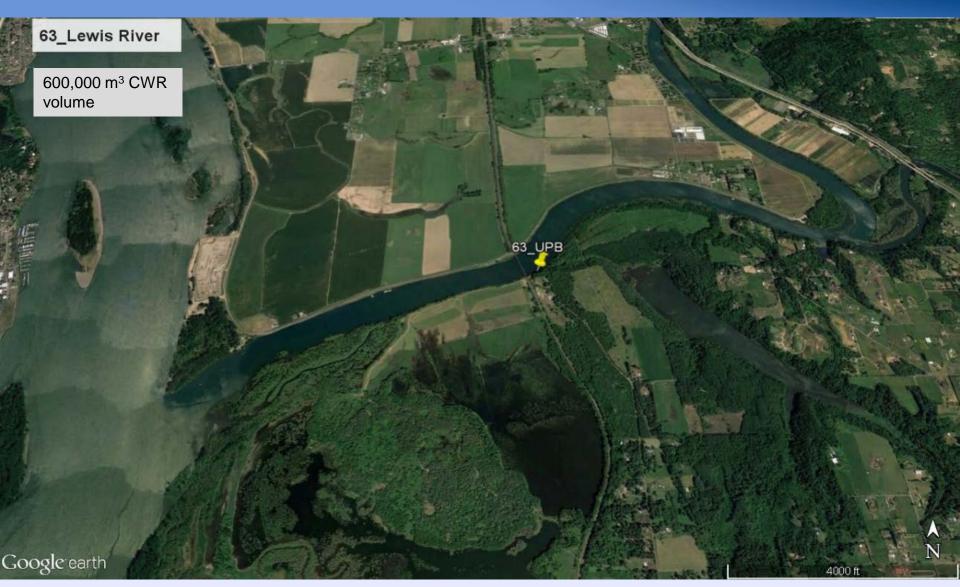
18

. Temperature (*C)

Kalama River CWR

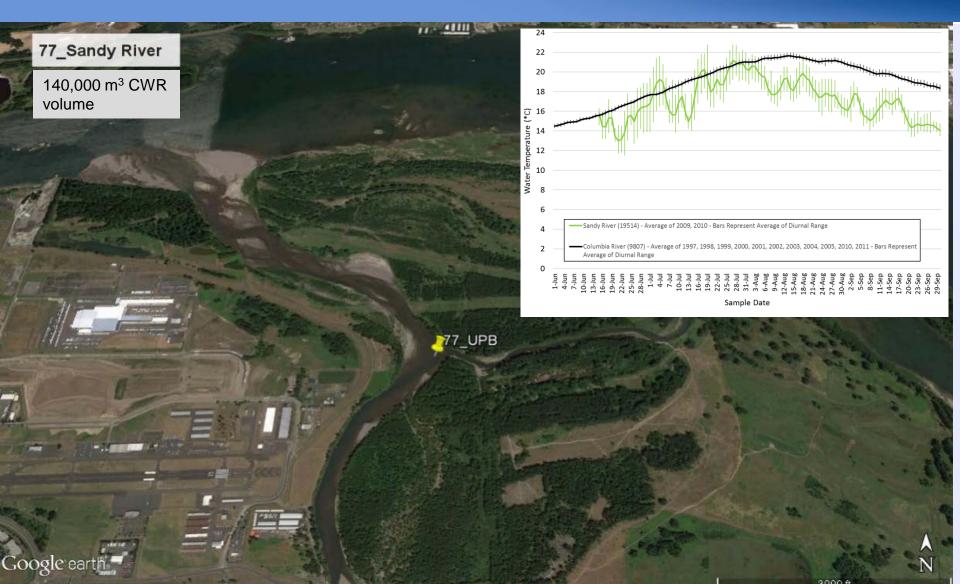
97

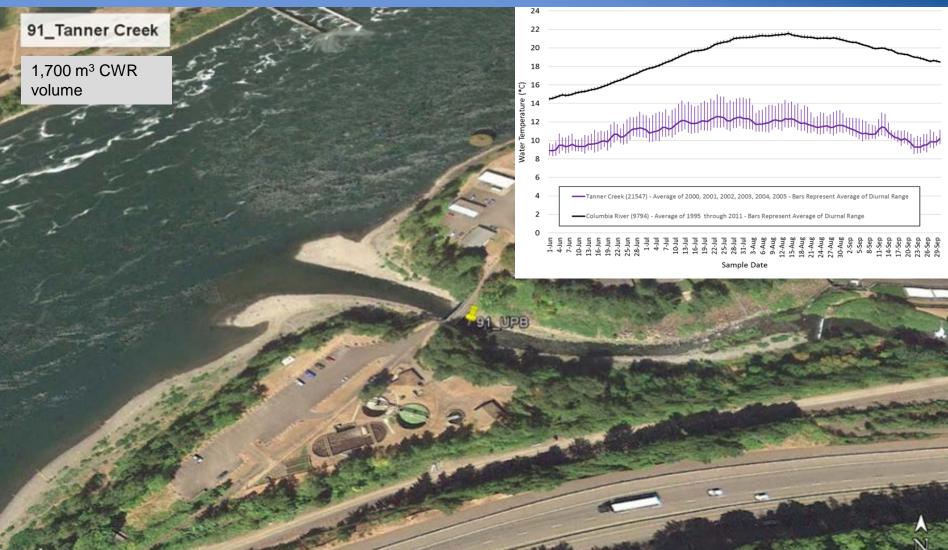
52_Kalama River

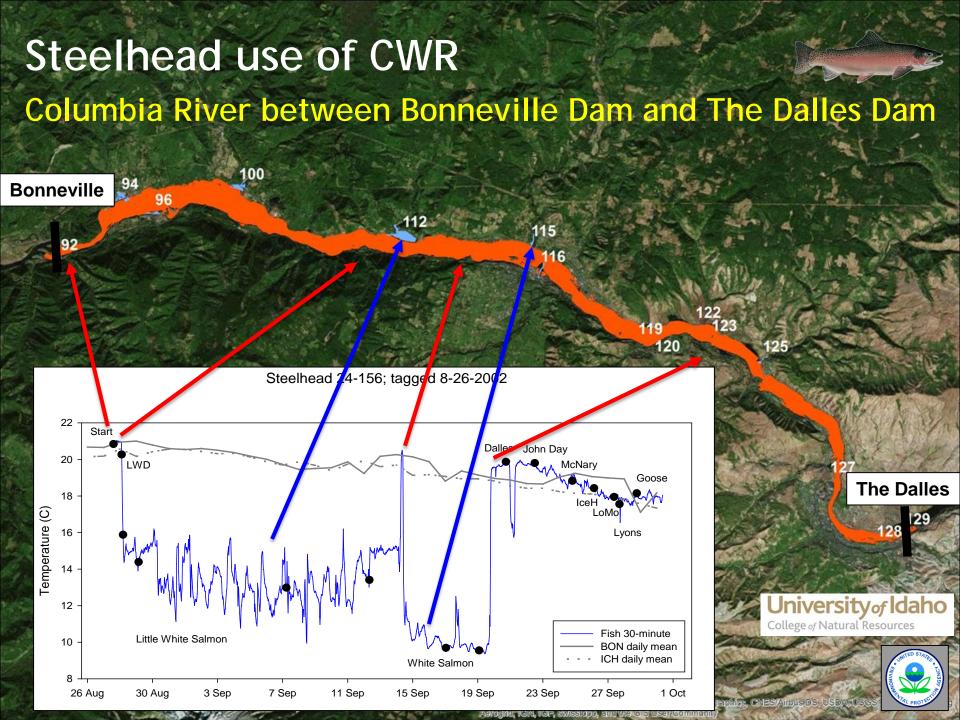

 $71,000 \text{ m}^3 \text{ CWR}$

volume

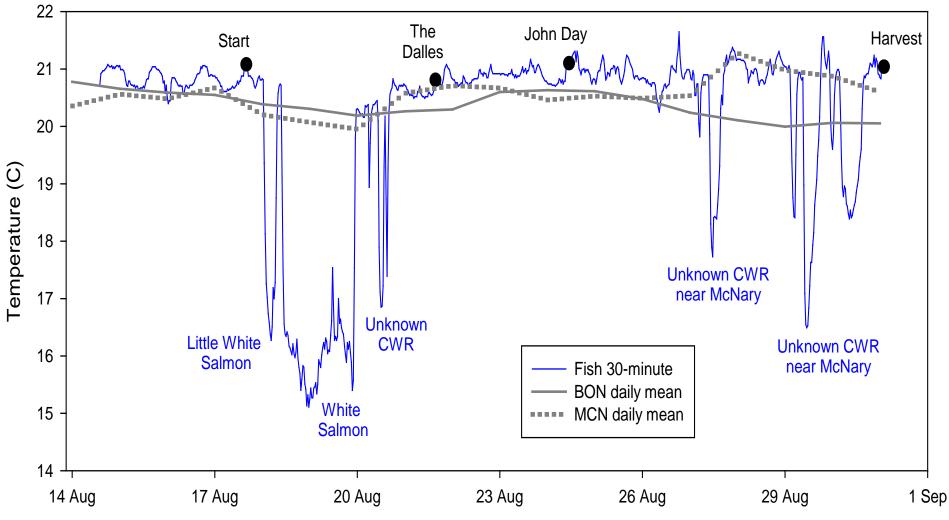
SMURDINITED STATES - SONEDA







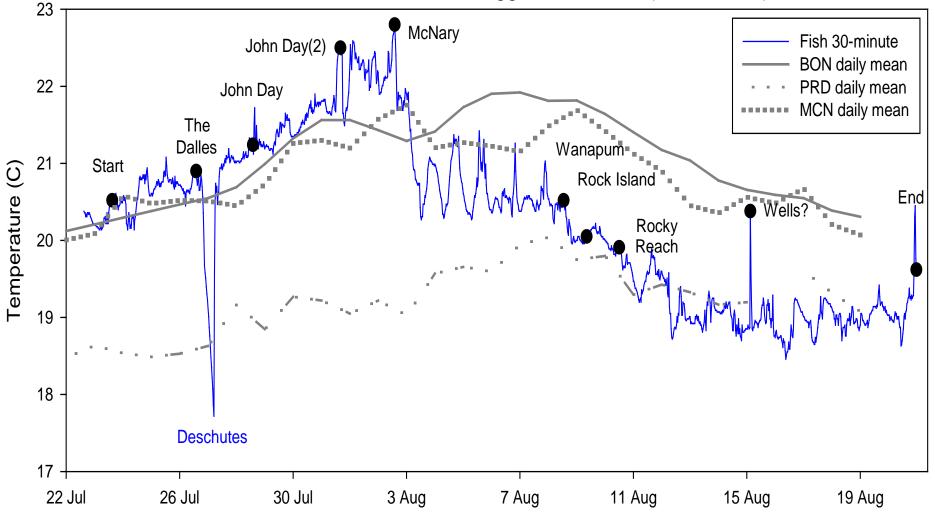
Tanner Creek CWR



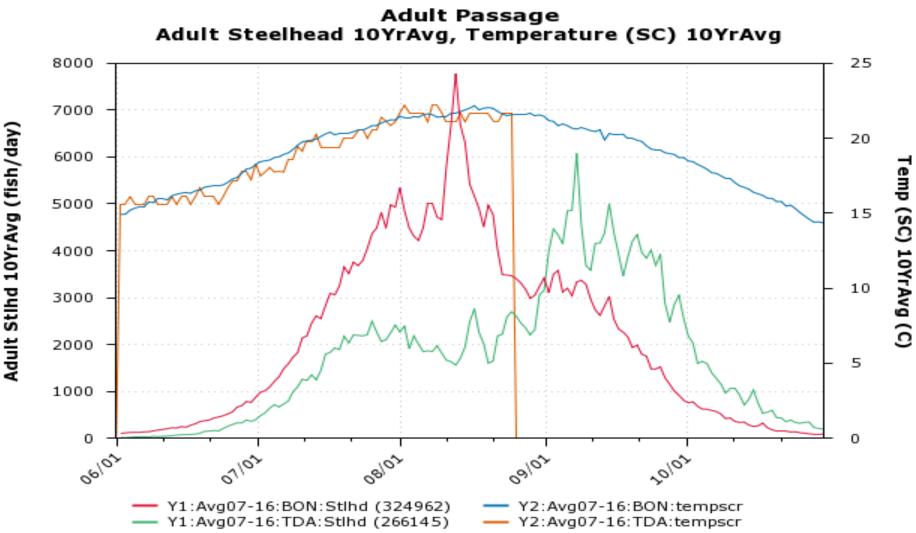
Fall Chinook use of CWR example

University of Idaho College of Natural Resources

Fall Chinook 25-429; tagged 8-14-2000 (DST 2650B)



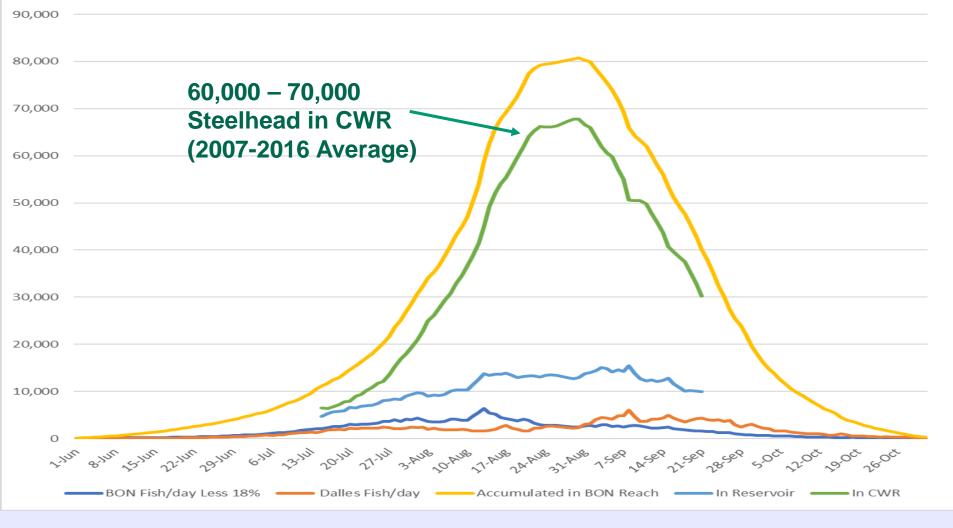
Summer Chinook CWR use example



College of Natural Resources

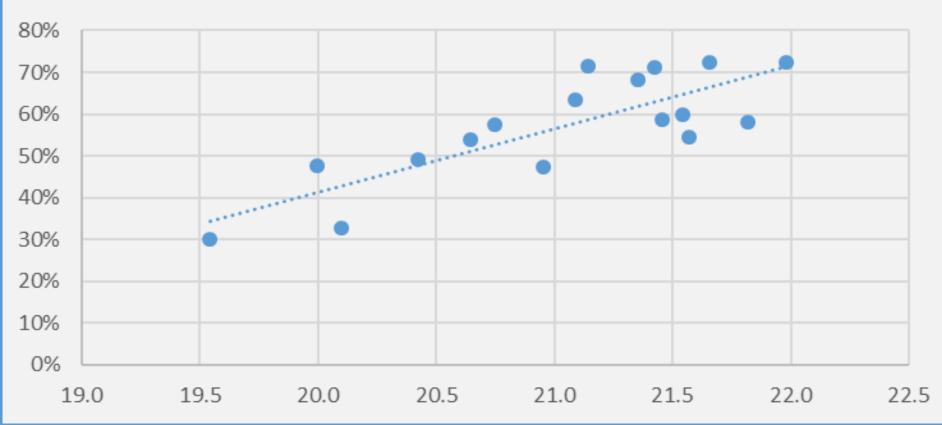
Summer Chinook 10-145; tagged 7-22-2000 (DST 3547A)

Bonneville Dam vs The Dalles Dam Steelhead Passage


www.cbr.washington.edu/dart

23 Jun 2017 10:05:16 PDT

Accumulation of Steelhead in Bonneville Reservoir Reach



Bonneville Reach Steelhead Accumulation vs Temperature

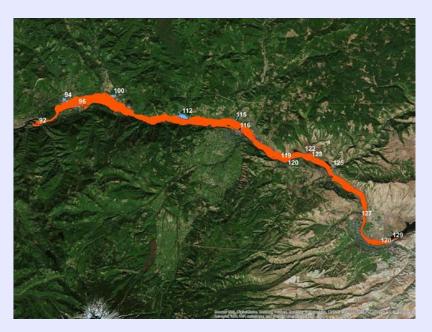
% of Steelhead Passing BON but NOT Passing Dalles Dam vs BON Dam Temperature

(July 15 - Aug 31 cummulative count & July 15 - Aug 31 Ave. Temp)

Inter-Annual Variation of the # of Steelhead in Bonneville Reach CWR

				Measured %	Expected		
	Ave	Passed	Passed	That Passed	to Passed		
	Temp	BON	Dalles	Dalles	Dalles	In BON Reach	In CWR (85%)
Year	July 15 -Aug 31	July 15 -Aug 31	July 15 -Aug 31	June 1-Oct 31	July 15 -Aug 31	Peak	Peak
2016	21.4	83,919	24,212	80%	66,868	42,656	36,258
2015	21.8	165,138	69,059	84%	137,893	68,834	58,509
2014	21.5	175,686	70,488	80%	140,923	70,435	59,869
2013	21.5	<u> 166,926</u>	68,949	83%	138,059	69,110	58,743
2012	20.1	142,032	95,612	86%	122,797	27,185	23,107
2011	19.5	252,331	176,573	82%	207,452	30,879	26,248
2010	21.0	231,804	121,974	82%	189,445	67,471	57,350
2009	21.6	451,509	205,163	86%	388,094	182,931	155,492
2008	20.0	225,506	117,044	79%	177,048	60,004	51,004
2007	21.1	229,124	83,820	76%	173,420	89,600	76,160
2006	21.1	187,415	53,379	72%	134,561	81,182	69,005
2005	21.4	175,028	55,866	77%	135,090	79,224	67,340
2004	22.0	155,516	42,744	78%	120,905	78,161	66,437
2003	21.7	209,328	58,083	77%	160,904	102,821	87,398
2002	20.4	257,857	131,121	82%	210,238	79,117	67,250
2001	20.7	397,879	169,554	80%	319,544	149,990	127,491
2000	20.6	164,593	75,954	75%	124,114	48,160	40,936
1999	20.0	136,136	76,782	77%	104,458	27,676	23,524
Average	20.9	219,048	98,363		175,585	77,222	65,639

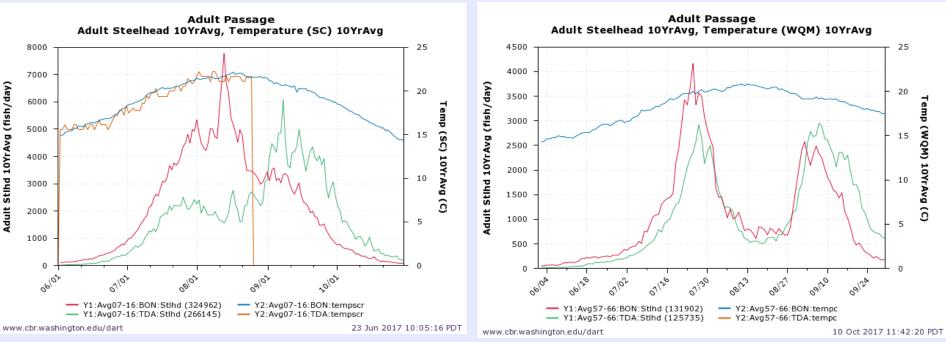
The # of Steelhead in Each Bonneville Reach CWR



	Total		# Steelhead in	# Steelhead in	# Steelhead in		
	CWR	% of CWR	Each CWR	Each CWR	Each CWR		
Tributary	Volume	in BON	(2007-2016	High Year	Low Year		
Temp	(> 2°C Δ)	Reach	Ave)	(2009)	(2012)		
°C	m3						
15.1	2,988	0.2%	99	260	39		
17.4	1,708	0.1%	57	149	22		
12.0	169,698	9.5%	5,624	14,788	2,198		
14.5	105,220	5.9%	3,487	9,169	1,363		
13.3	1,101,126	61.7%	36,490	95,957	14,260		
15.7	153,529	8.6%	5,088	13,379	1,988		
15.5	28,000	1.6%	928	2,440	363		
16.4	222,029	12.4%	7,358	19,349	2,875		
	1,784,298	100%	59,130	155,492	23,107		
	Temp °C 15.1 17.4 12.0 14.5 13.3 15.7 15.5	CWR Tributary Volume Temp (> 2°C Δ) °C m3 15.1 2,988 17.4 1,708 12.0 169,698 14.5 105,220 13.3 1,101,126 15.7 153,529 15.5 28,000 16.4 222,029	CWR% of CWRTributaryVolumein BONTemp(> 2°C Δ)Reach°Cm315.12,9880.2%17.41,7080.1%12.0169,6989.5%14.5105,2205.9%15.7153,5298.6%15.528,0001.6%16.4222,02912.4%	CWR% of CWREach CWRTributaryVolumein BON(2007-2016)Temp(> 2°C Δ)ReachAve)°Cm315.12,9880.2%9917.41,7080.1%5712.0169,6989.5%5,62414.5105,2205.9%3,48713.31,101,12661.7%36,49015.7153,5298.6%5,08815.528,0001.6%92816.4222,02912.4%7,358	CWR% of CWREach CWREach CWRTributaryVolumein BON(2007-2016)High YearTemp $(> 2^{\circ}C \Delta)$ ReachAve)(2009)°Cm315.12,9880.2%9926017.41,7080.1%5714912.0169,6989.5%5,62414,78814.5105,2205.9%3,4879,16913.31,101,12661.7%36,49095,95715.7153,5298.6%5,08813,37915.528,0001.6%9282,44016.4222,02912.4%7,35819,349		

Steelhead in Bonneville Reach in Late August - Early Sept

- ➢ Bonneville Reservoir 600,000 acre-feet
- Bonneville Reach CWR 1,446 acre-feet
- 85% of the steelhead are in 0.2% of the water
- 83 steelhead per Olympic-sized pool (2,500 m3) in an average year
- 400 steelhead per Olympic-sized pool in a high run year in CWR 18°C or less



Steelhead Dam Passage -Current vs 1950s/60s

Current 2007- 2016 average

Decade after The Dalles Dam was Built 1957-1966 average

- Steelhead CWR use appears to be an adaptation to warmer Columbia River temperatures
- Current temperatures are 1.8°C warmer in July and 1.5°C increase in August vs 1950s
 - 10 days above 20°C and 0 days above 21°C in an average year (1950s)
 - 57 days above 20°C and 27 days above 21°C in an average year (Current)

Is The Current CWR Sufficient? (preliminary)

Columbia River Temperatures (Aug Mean)

Ļ		20C (Historic)	21.5C (Current)	22.5C (2040)
f Fish	Current	Probably	Maybe	Maybe Not
# of	Recovered	Probably	Maybe Not	Probably Not

- Less need for CWR in Lower Columbia River historically
- CWR use important today for Steelhead and Fall Chinook
- CWR likely to be used more in future due to Climate Change
- CWR may not compensate for warmer Columbia River

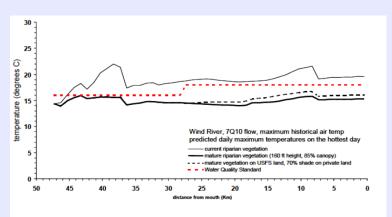
Priority Action - Protect and Enhance the 13 Primary CWR

13 Tributary Assessments

Factors affecting temperature

Climate Change

Water Withdrawals


Riparian Vegetation

Dams and Hydromodifications

Actions to Counteract Climate Change

- CWR tributaries predicted to warm due to climate change
 - 1C increase by 2040 and 2C by 2080 (Aug mean)
 - Deschutes, Klickitat, Wind, Eagle Creek, and Sandy River CWR function at risk
- List specific actions to protect/reduce stream temperatures

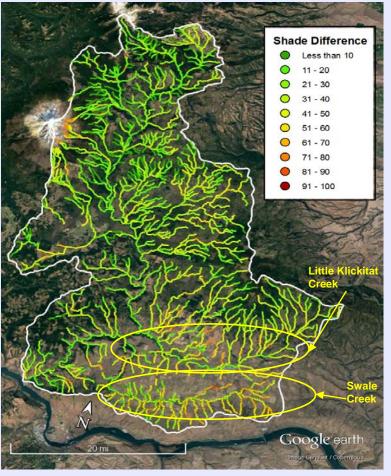
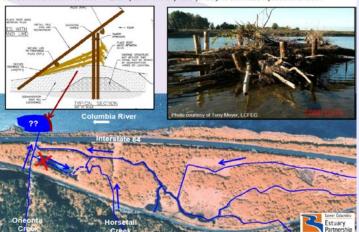


Fig. 5 Klickitat River Shade Difference between System Potential and Current Shade, Peter Leinenbach, 7/14/17

Figure 17. Predicted daily maximum temperature in Wind River under critical conditions for the TMDL.

Restore/Enhance Confluence Areas

Herman Creek Cove



- Sedimentation concerns at Herman Creek Cove, Wind River, Klickitat River confluence areas
- LCEP Oneonta Confluence Project

Wind River

Restoration Actions - Example 5: modify bathymetry to increase hydraulic shadow

28