Using Hydrodynamic and Ecosystem Models to Predict Habitat Changes at Restoration Sites

Science Work Group Meeting September 27th, 2016

Multispecies World

Questions

At the South Shillapoo site we wanted to know:

- Would levee breaching negative ley effect current dabbling duck habitat ?
- How much available habitat for juvenile salmonids?
- Would vegetation community change?

Ecological Functions Model (EFM)

- Ecosystem monitoring & reference site data (LCEP)
- Gage data (USGS)
- Treaty model (USACE)
- Terrain model (USACE)

Primary- Campbell and Cunningham (2005- 2014 data)-

Other- Willow Bar Sauvie (2005), North Unit Sauvie (2011), Frenchman Bar (2014), Lake River (2011), South Unit (2014)

Basic Approach

Ecosystem Model (HEC-EFM)

Average Winter .1 -7 ft Depth

ALL STREET	2	COMPANY AND A DESCRIPTION OF THE PARTY OF		the second secon
<u>Alt 2 - V</u> Alt 2. V	<u>Winter</u> Winter	Ait 3 Wi	<u>nter</u> t 3. Winter	Percent Time Inundation 1-10% 10-60% 60-90% >90% Site Extent
AL		-		
Waterfowl		Waterfowl		
Habitat	Alt. 2 Winter	Habitat	Alt 3.Winter	
Opportunity .1-7 ft	Acres (Dec - Jan)	Opportunity .1-7 ft	Acres (Dec - Jan)	
1-10%	49.5	1-10%	48.4	
10-60%	188.5	10-60%	178.6	
60-90%	161.5	60-90%	159.6	

>90%

Total

8.25

394.8

1,000 Meters

>90%

Total

0.8

400.3

1,000 Meters

Alt 2. Spring

Alt 3. Spring

Percent Time Inundation 1-10% 10-60% 60-90% >90% Site Extent Existing Conditions

Alt. 2 Spring Salmon Habitat Acres Opportunity .1-7 (Feb ft Jun) 9.9 1-10% 10-60% 170.3 60-90% 63.8 17.4 >90% Total 261.4

	Sa
	Op
	71
	1-
	10
	60
	>9
1,000 Meters	Тс

	Alt. 3
	Spring
Salmon Habitat	Acres
Opportunity .1-	(Feb -
7 ft	Jun)
1-10%	0.2
10-60%	72.9
60-90%	28.7
>90%	150.45
Total	252.3

1,000 Meters

Vegetation Category	Acres	Vegetation Ca
Open Water	40.3	Open Water
Native Herbaceous	69.3	Native Herbace
Exotic Herbaceous	135.5	Exotic Herbace

Legend

Vegetation Zones

- Open Water (90 100% inundation)
 Natvie Herbaceous (60 90% inundation)
- Exotic Herbaceous (10 60% inundation)
- Existing Conditions
- Site Extent

Vegetation Category	Acres	
Open Water	186.33	
Native Herbaceous	12.33	
Exotic Herbaceous	74.06	

* Source USFW Columbian White-tailed Deer Habitat Suitability Mc

Summary

- Coupling a hydraulic model with a ecological model can quantify habitat changed for multiple species related to restoration actions
- A better understanding of how habitat will change at a site can help restoration design and help managers evaluate sites with multi-species objectives

Questions and Discussion